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ON THE BUCKLING OF SYMMETRIC STRUCTURAL SYSTEMS
WITH FIRST AND SECOND ORDER IMPERFECTIONS

JOHN ROORDA

Department of Civil Engineering, University of Waterloo, Canada

Abstract—The stability of symmetric structural systems with first order and second order imperfections is in-
vestigated. The analysis concerns a discrete system with n degrees of freedom. Resulting expressions relating
reduction in critical load to the magnitudes of the imperfections indicate that a complex interaction exists between
these quantities. Second order imperfections have a relatively minor effect on the critical load. Experiments on a
rigidly jointed roof truss are discussed. The experimental results show good qualitative agreement with theory.

1. INTRODUCTION

IN the past few decades much progress has been made in the study of the stability of imperfect
structural systems in the initial post-buckling range. The work by Koiter [1], who provided
a general nonlinear theory for stability in the context of continuum elasticity, must be
regarded as the basis for the study of any problem of this type. In more recent times Roorda
[2] and Thompson [3] have presented more detailed studies of the bifurcation modes,
originally predicted by Koiter, that arise in elastic stability theory, namely the asymmetric
mode, the stable-symmetric mode and the unstable-symmetric mode. In these works
(which are concerned with discrete structural systems with n degrees of freedom) as well
as in Koiter’s work only first order imperfections were considered, these being the most
influential ones that can occur. It was shown that the relationship between this type of
imperfection and the buckling load of the structure follows indeed Koiter’s general one-
half and two-thirds power law for asymmetric and symmetric systems respectively. It is
also worthwhile to note that the experimental results on a continuous asymmetric system
reported in Ref. [2] are not only qualitatively, but also quantitatively in full agreement
with the general theory [4].

In a later work by Roorda [5] second order 1mperfectlons as well as the first order type,
were introduced. The complex interaction of these different classes of imperfections and
their combined effect on the buckling load were studied with specific reference to asym-
metric systems. Second order imperfections were found to be of relatively minor importance
in this case.

The purpose of the present work is to study the effect of second order imperfections on
the buckling of symmetric systems. The theory is developed for a system with n degrees of
freedom, with emphasis on unstable-symmetric systems. Certain experimental results
obtained from a simple roof truss are included to substantiate the theoretical conclusions.

2. EQUILIBRIUM

In the case of a discrete, conservative, imperfect structural system there exists a potential
energy function V which depends on the load parameter, P, the generalized co-ordinates,
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Qi = 1,2,3,..., n)and the imperfection parameters ¢ and f3, i.e.
V= V(P Q¢ p) (1

The potential energy V is a single valued function of these variables. The potential energy
of the idealized (perfect) structural system can be obtained by settinge = f = 0 in equation
(1) ie.

V = V(P,0:0,0). (2)

In the region of configuration space, R, that is of interest the function V and its partial
derivatives with respect to P, Q,, ¢ and f3, to any required order, are postulated to exist and
to be continuous throughout R.

The necessary and sufficient condition that the system be in a state of equilibrium is
that ¥V must be stationary and hence V; = 0 (i = 1,2, 3, ..., n) at an equilibrium configura-
tion Q. in R. The subscript on V here and in the sequel indicates partial differentiation
with respect to Q,;. For the idealized structural system we have n equilibrium equations
V(P,Q;,0,0), =0 (i = 1,2,3,..., n), which may be solved to yield a number of solutions
of the type @; = Q(P) each of which defines an equilibrium path for the idealized system
in the {n + 1) dimensional P -, space.

Suppose one of these solutions, namely @5 = Q;5(P) defines an equilibrium path that
passes through the region of interest R. This path will usually be the unbuckled equilibrium
path and will subsequently be called the basic state. Q5 must be single valued in the region
R to exclude the possibility that P reaches a maximum or minimum in R. Without this
provision the value of Q;3(P) would be ambiguous and subsequent analysis would break
down.

We can now apply the transformation

0;=Qip+q 3)
and the non-singular, orthogonal transformation of variables
q4i = o;(Pu; )
to obtain a new potential function
T(F, uj, ¢ p) = V[P, Qip(P)+a;{P)u;, &, B]. &)

The transformations (3) and (4) are chosen in a special way, giving the function T(P, u;, &, §)
the following special properties only: (i) T, = T,; = T,,; = ... = Ofor all i; (ii) T;; = T;
=...=0for all { and j, i # j, where the subscripts on Tindicate partial differentiation
with respect to u;, 4;, ..., and P, and where the partial differentials are evaluated on the
basic state of equilibrium. The first of these properties follows immediately from the
fact that ¥; = 0 for all values of P on the basic state. The second is of course due to the
choice of coefficients in the transformation matrix «;(P). In essence, the second variation
of T is diagonalized at all values of the load P on the basic state of equilibrium, and hence
ufj = 1,2,3,...,n)are the principal co-ordinates.

We now proceed to find the equilibrium states for the imperfect system in the region
R about a point B on the basic state, at which P = P, u; =0( = 1,2,3,...,7n) and
¢ = B = 0. Applying Taylor’s Theorem to the function T and using the equilibrium
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condition T; = 0 (a direct consequence of V; = 0) yields the following n equilibrium
equations:

ot
Pl ti = T + T + TP

1
+ 51 [Tt + 2 Tipu;+ Tppe? + T2+ 2T ue
+2TipuiB +2Type+ 2 TpippB + 2 Tigpe ] (6)

1
+3—'[T,-jk,ujuku, + .. ]+ - 0

Here the increment in P is denoted by p and the subscripts p, ¢ and § on T indicate partial
differentiation with respect to p, ¢ and p. Lower case ¢ indicates the small increment in
potential energy, ie.

t= T(PO + P, Ui, & ﬂ) - T(POs()’O’O)'

The usual summation convention has been adopted.

In equation (6) the coefficients T;; may be recognized as the stability coefficients. When
one or more of the stability coefficients are zero the basic state of equilibrium is critical.
Suppose we restrict our analysis to the primary critical points for which only one of the
stability coefficients vanishes, all others remaining positive. Suppose in fact that 7;; = 0,
T, > 0 for r # 1. Clearly u, is then the critical principal co-ordinate and will be called
the deflection of the system. Roorda {5] has shown that in this case the coeflicient T},
plays an important role in the behaviour of the structural system in the neighbourhood
of a critical point. In fact it was shown that T ; determined the initial slope of the idealized
post-buckling path in an asymmetric system. When T),, vanishes, this slope is zero and
it is to be expected that the initial curvature will play an important part in such systems.
The initial, idealized post-buckling path will be symmetrical about the basic equilibrium
path. Therefore a system with these special properties is called a symmetric system and is
the subject of the present paper.

In the analysis so far, two types of imperfections were introduced, namely & and S,
without any real distinction being made between them. Considering the possibility that
¢ and f belong to different classes of imperfections we now suppose that Ty, = 0 at the point
of critical equilibrium on the basic state whereas Ty, # 0. In effect f is a first order, and
¢ a second order imperfection.

Clearly setting T;, = T;,, = Ty, = 0in equation (6) results in two types of equilibrium
equations for the imperfect symmetric system. The first type, a single equation, governs
the behaviour of the critical principal co-ordinate u, and the second type, a set of (n—1),
governs the behaviour of the non-critical principal co-ordinates u,,r $ 1. Due to the
incremental character of the variables p, u;, ¢ and f the simplifying procedure of neglecting
all second order terms that contain variables that also appear as first order terms, and
neglecting third order terms that depend on combinations of variables that also appear
as second order terms, etc, is justified. The resulting simplified equilibrium equations may
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be written as

1
I = ’TIB,B'*‘?[le lrulur+ Tlrsurus+2Tp1 1PUy + Tl£s£2

1
+2T1j£ujs+2’fp“p£]+§Tlulu? =0 (7a)

t, =T + Lo+ Tpf+3Tui =0 (r#1s#1) (7b)

It is important to remember the provision which underlies the above simplifications,
i.e. all relevant coefficients in the potential energy expansion, except T, T;, and Ty,
have non-zero values. Violation of this provision may affect the validity of these simplific-
ations.

Solving equation (7b) for u, and substituting in equation (7a), neglecting terms whose
contributions are small compared to others, provides us with an equation in u, alone,
namely,

1 1
Tl,,ﬁ+5[2Tpl 1puy +2Au e +2T,, pe + Be?] +§ruf =0 8)

in which the constants 1, 4 and B are functions of the T coefficients only. Equation (8) is
exact in the limit as u;, p, ¢ and f§ tend to zero and presents a good approximation for small
values of these parameters.

For constant ¢ and f8, equation (8) describes a curve on a p—u; plot which approaches
two “asymptotes” whose intersection occurs at the point (u,,, po) where

wo = — 77" (%a)
Po = — ! (As+ T tsz). (9b)
Tpll 2T§11
Shifting the origin to the point (u,,, po) by setting
Uy =uo + il (10a)
pP=potp (10b)

and neglecting a small cubic term in ¢, the equilibrium equation is transformed to the
more convenient form

T, _
PLei + Typf+Ce? = 0 (11a)
ptl

1_-3 - 1
gty + T, 1 pidy — 37

where C is given by

T,
C = 5(3—2;—“,4). (11b)
pl1
In terms of the new variables, the asymptotes assume the simple forms
u, =0 (12a)
1.=2 =1 Tple =
gty + T, P—37T e = 0. (12b)

Tpiy
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For the ideal structural system both ¢ and f are zero thus giving rise to an equilibrium
equation which has the two solutions

u; =0 (13a)
tui+T,,p = 0. (13b)

The first is the trivial solution that corresponds to the basic state. The second solution
represents another equilibrium path that intersects the basic state at the critical point B,
i.e. the point of bifurcation. In a plot of p against u,, this is a parabola with curvature
proportional to 7. If t is positive, as in a column or plate type structure, the system is
stable-symmetric. If, on the other hand, 7 is negative as in an arch type structure, then the
system is unstable-symmetric. These two types of structures have been treated by Roorda
[2] with respect to B imperfections only, and experimental results were presented.

It can be seen that except for the small linear term in #,, in equation (12), which is
present by virtue of the ¢ imperfection, the asymptotes correspond closely with the ideal
solutions. In the limit, when ¢ = 0 but § # 0, the equilibrium equation (11) has as asymp-
totes the solutions of the ideal structural system.

3. STABILITY

To determine the stability or instability of the equilibrium states of the imperfect
system we must examine the second variation of the potential energy with respect to small
displacements from the equilibrium states. It can be shown that equilibrium states in the
neighbourhood of the primary critical point B are stable if |t;] > 0 and unstable if |¢, 4 < 0.
Evaluating this determinant, and disregarding terms that are of higher order, yields

TZ n

It = (t“— T'“uf) 01 T, (sum over r). (14)

rr k=2
Thus, since Ty are all non zero and positive, the stability criterion is given by
> stable
TH, , _ .. ey

tii— T uy =0 for critical equilibrium. (15)

< unstable

Proceeding with the differentiation of ¢, neglecting the small terms dependent on f, and
expressing the result in terms of the new variables @, and p yields the following stability
criterion which is consistent with the present order of approximation:

> stable
To1e .. ey -
i+ T,y 1[3—1%1718 =0 for critical equilibrium. (16)
pll
< unstable

The equality of (16) may be obtained directly by implicit differentiation of the equilibrium
equation (11) with respect to i, and setting dp/dii, = 0 as the condition for a critical
point, thus indicating that extremum points on the equilibrium paths are critical states
of equilibrium. This equality may be designated as the stability boundary which separates
the stable zone from the unstable zone. In a p-i, plot, all equilibrium states lying above the
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stability boundary are unstable while those lying below are stable. All equilibrium states
lying on the boundary are critical. It may also be noted here that the slope of the asymptote
given by equation (12b) is equal to half the slope of the stability boundary at the point
#; = p = 0. This result is in agreement with the findings for the asymmetric system out-
lined in an earlier paper [2].

Figure 1 shows the equilibrium paths in the vicinity of the primary critical point for
an unstable-symmetric system. The curves are drawn for constant ¢. The § imperfection is
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FiG. 1. Equilibrium paths,

allowed to vary, giving rise to a number of equilibrium paths. The stability boundary is
indicated as a dash-dotted line while stable and unstable portions of the equilibrium paths
are shown as solid and broken lines respectively. When
C

=Py = ——t’ 17

f Bo Twe (17
there are two distinct equilibrium paths that intersect at a point of bifurcation. It must be
remembered that Fig. 1 is valid only for the case ¢ # 0. When ¢ = 0 the extremum of the
asymptote would lie at the origin (ie. #, = u; =0, p = p = 0). It should also be em-
phasized here that for § = 0,z # 0, there will in general not be a point of bifurcation.

4. CRITICAL STATES

Critical states of equilibrium lie at the points where the equilibrium paths cross the
stability boundary. We therefore have to solve the stability equation (16} and the equilibrium
equation (11) simultaneously to find their point of intersection (i1, p*). Due to the extreme
nonlinearity of these equations, an exact solution cannot be found very easily. To gain, at
least, an insight into the behaviour of the system in the limit as the imperfections assume
infinitesimally small values, only the most important terms {i.e. those with lower power)
are retained at each stage in the calculations. The following relationships are then obtained

Lt = T+ Ce? (18a)
BT3,1p* = —9t(Ty B+ Ce?). (18b)

i
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It is evident that the (&}, p*)—¢—p relationships are very complex. Since a knowledge of the
critical load of a structure is usually more important than a knowledge of the critical
deflection, only the behaviour of the critical load will be studied here in greater detail.
With reference to equation (18b), a three dimensional diagram may be drawn illus-
trating the interaction of the two classes of imperfection and their combined effect on
the critical load. Equation (18b) defines a surface in p*—e—f space that has a sharp curved
ridge lying in the ¢—f§ plane. Figure 2 depicts such a surface for an unstable symmetric
>
system for the three cases C = 0. This diagram clearly illustrates the effect of changing
<
the sign of C. It appears that for a symmetric structural system a critical point occurs
for all possible combinations of ¢ and . This result is in contrast to the case of the asym-
metric system in which certain restrictions had to be placed on the values of ¢ and f to
ensure buckling [5].

<0

F1G. 2. Stability surfaces.

Writing equation (18b) in a more explicit form, with regard to equation (9) and equation
(10), yields

1
Tpll

3

p* = — [Ae+3(§) (Twﬁ+Csz)§]. (19)
Itis seen here that the linear dependence of p* on ¢ is modified by term of order % essentially
due to curvature of the ridge in the surfaces in Fig. 2. Curves corresponding to the inter-
section of a plane i = constant with the surface for C < 0 are sketched in Fig. 3(a) for
various values of . The dashed line represents the condition given by equation (17).

Clearly there is, at least initially, a linear relationship between p* and ¢ so that the
effect of a small second order imperfection on the critical load will be relatively unimpor-
tant. For this reason the second order imperfection may be called a minor imperfection.
It is seen that for non-zero values of the first order imperfection f, there may occur two
cusps in the p*—¢ relationship at which the structure buckles at a point of bifurcation.

The dependency of p* on f follows a two-thirds power law and is depicted in Fig. 3(b)
for various constant values of ¢. In essence, a vanishing small first order imperfection
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(a) (b)

FIG. 3. (a) p*-¢ curves for constant values of B. (b) p*—f curves for constant values of ¢.

has a proportionately larger effect on the critical point, and may therefore be labelled as a
major imperfection. The locus of the cusp in these curves is a parabola initially, and may
be obtained by eliminating ¢ from equation (17) and equation (19). It is given by

2 T
Toup* = —A4*-2p. (20)

As already mentioned, the slope of the p*—¢ curves is infinite in certain instances. This
means that the minor imperfection, ¢, takes on some of the characteristics of the major
imperfection, f, in that a small change in ¢ will produce an appreciable change in p*.
However this effect is extremely localized and far overshadowed by small changes in §.

In view of the drastic simplifications employed in deriving equation (18) and subsequent
equations, it is perhaps of benefit here to examine, in a qualitative manner, the results to
be expected if higher order terms are retained. With reference to the equilibrium paths
drawn in Fig. 1, the typical form of a more accurate p*—f§ curve for constant, non-zero ¢ can
easily be deduced and is drawn in Fig. 4. The effect of higher order terms in the analysis

<0

AN

F1G. 4. p*—f curve depicting the higher order effect of ¢ (Derived from Fig. 1).

is therefore to “bend” the point of the cusp to the right or to the left depending on the
constants in the equations. The corresponding critical points in Fig. 1 and Fig. 4 are indic-
ated by the letters aa’bb’cc’c”. It is notable that in the small area around the point of bifur-
cation ‘g’ a symmetric system with second order imperfections has the same characteristics
as an asymmetric system in that the “ideal” post-buckling path (§ = f,) has a non-zero

slope. The p*-f plot will therefore be parabolic as it passes through the point “a” [2].
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When B = B, there are three possible critical points, two of which merge into one when
B = B;5.For B > B, or B < B, only one critical point is possible and the curve approaches
the cusp predicted by the simplified theory embodied in equation (19). The cusps appearing
in the p*-¢ relationship will be modified in a similar manner if higher order terms are
included.

In Fig. 4 the portion of the curve to the right of, and above, the point “a” represents
critical points on the complimentary equilibrium paths and is therefore of academic
interest only. The remaining part stems from the natural equilibrium paths (i.e. those
obtained by gradually increasing the load on the structure from zero) and are therefore of
practical significance.

5. EXPERIMENTS

The experiments were performed on a rigidly jointed roof truss with a span of 48 in.
The members were made from high strength steel strip with a nominal cross-section of
1 in. x 15 in. Two vertical loads of equal magnitude were applied through knife-edges at the
two half-way points on the upper chord of the truss. A moveable knife seat device was
used to allow small movements of the points of loading away from the joints. A distinction
is drawn between symmetrical and anti-symmetrical eccentricities. If both load points are
displaced inward or outward equal amounts, d, the eccentricity is symmetrical. If both
load points are moved to the left or to the right equal amounts, d,, the eccentricity is anti-
symmetrical. The positive directions of d, and d, are outward and to the right respectively.

A schematic diagram of the frame and the loading arrangement is shown in Fig. 5.
The spring balance and screw-jack loading device is semi-rigid, allowing unstable portions
of the load-deflection curves to be traced.

w
(pounds)

'
/T75\

a

T T 1 T
-4 2 @] 2 4 (degrees)

Fi1G. 5. Loading arrangement and experimental load deflection curves for the roof truss.

The first step in the experiment was to determine the load-deflection curves. The
rotation, 6, of the top joint was used as a deflection parameter. The curves obtained are
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plotted in Fig. 5. Two sets of curves for slightly different anti-symmetrical eccentricities
were obtained to bound the area in which the ideal post-buckling curve must lie. The
curves clearly indicate that the symmetrically loaded roof truss constitutes an unstable-
symmetric system. The symmetry result is to be expected if one examines the buckling mode
of the system. From the photograph in Fig. 6 it is readily deduced that the configuration of
negative buckling must be the mirror image of positive buckling. The potential energy for
the tdeal system must therefore be the same in both cases and hence a symmetrical post-
buckling behaviour should result.

In the second stage of the experiment, the variation of the critical load with anti-sym-
metrical eccentricities was investigated. Plots of the maximum load W*, against d, are
shown in Fig. 7 for three constant values of d;. All three curves exhibit the characteristic

(pounds)

d 2325

T T T T T da
-05 o 05 10 15 (nenes)

F1G6. 7. Experimental W*-d, curves for constant values of d,.

cusp of symmetric systems and all have an offset from the load axis to account for other
(unknown) imperfections in the system. This offset is nearly the same for the three values
of d,, indicating that for this particular structure the quantity corresponding to C in
equation (18b) is very small. The cusp tends to flatten out as the symmetric eccentricity dj,
changes in the positive direction.

The third step was to determine the variation in critical load with d at constant values
of d,. The experiment was carried out at four different values of d,. The resulting curves
are shown in Fig, 8. The curves tend to be more or less parallel with a finite slope, indicating
that symmetrical eccentricities do have an appreciable influence if they are large enough.

From Fig. 7 and Fig. 8 it can be deduced that a three dimensional W*-d~d, plot would
be a surface with a sharp ridge that slopes in the W*-d, plane. This partly confirms the
conclusions reached in the preceding section. The curvature of the ridge in the W*-d,
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Fi1G. 8. Experimental W*—d, curves for constant values of 4,.

plane is very small (if it exists at all) and is hardly noticeable in the range of eccentricities
allowed by the moveable knife-seat mechanism. It was therefore not found possible to
obtain the cusps predicted by Fig. 3(a).

In this respect the small pre-buckling deformations of the truss due to axial shortening
of the members may have affected the results to some extent. It is thought that this type of
deformation introduces an additional “imperfection” of the second order type which
may interact with d, and thus distort the curves somewhat. To obtain a further insight
into this problem a frame analysis of the Koiter type [4], which admits axial deformations,
would be needed. This is, however, beyond the scope of the present paper.

6. CONCLUSIONS

(1) If both first and second order imperfections are present in a symmetrical structural
system, there is a complex interaction between the two types of imperfection. Their com-
bined effect on the buckling behaviour and critical load is generally dominated by the
first order imperfection. The results obtained from an experiment on a roof truss give a clear
picture of the relative effects of the two classes of imperfections on the critical load. The
results show reasonably good qualitative agreement with theory for an unstable-symmetric
system.

(2) The results obtained are of practical importance to structural engineers in two
respects. First, and perhaps most important, great care must be taken in both the manu-
facturing of the system and the positioning of the loads to ensure that imperfections and
eccentricities belonging to the first order class are reduced to a minimum. Secondly, there
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may exist the possibility of increasing the critical load of unstable-symmetric systems by
judiciously introducing certain imperfections or eccentricities of the second order type.

(3) It should be pointed out that it was necessary to perform the experiments at quite
large effective imperfections due to the difficulty of obtaining consistent results at smaller
values. Since the theory is valid only in the limit as the parameters approach zero, it is to
be expected that the experimental curves should become somewhat distorted as the
effective imperfections become larger. However on examining the experimental results
closely, there seems to be very little distortion as far as the major imperfection is concerned,
indicating that (at least for structures of the type examined here) the approximate theory
is valid over quite a wide range of major imperfections.

(4) Finally, upon comparison of the experimental work on a roof truss reported here
with that on a bridge truss reported earlier [5], a curious point emerges. Although in both
cases the nominal system (i.c. frame and loading) is spatially symmetrical, the overall
post-buckling behaviour is not of the same type. The bridge truss experiment yields an
asymmetric load-deflection behaviour with its corresponding stable and unstable states,
whereas the roof truss yields a completely unstable symmetric type behaviour. The ex-
planation for this apparent inconsistency must be sought in the spatial mode of buckling.
Whereas the spatial configurations of positive and negative buckling in the roof truss
experiment possess the property of mirror symmetry, this is not the case in the bridge truss
experiment. For this reason an asymmetric load-deflection behaviour may be expected
in the latter case.

On the basis of these experiments, and others reported in Ref. [2], the following tent-
ative rule for frame type structures may be formulated : If the system geometry possesses a
line of symmetry, and if the spatial configuration of positive buckling is the mirror image
of negative buckling, then the system produces a symmetric load-deflection behaviour in
the post-buckling range.
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A6crpaxT—Hccnenyercs yCTOHYMBOCTE CHMMETPHYECKHX CTPOMTENBHBIX CUCTEM C HETOYHOCTSIMH NEPBOTO
K BTOPOTO poIa. AHAJIM3 KACAETCs JUCKPETHOH CUCTEMBI € ‘‘n’’ cremeHsaMu cBobGoasl. PesympTHpyrolme
BBIPAXEHUS, KACAIOIIMECA YMEHBIUEHUS! KPUTHYECKOH Harpy3KH OTHOCHTENIBHO BEJMYMH HETOYHOCTEH,
YKa3bIBAIOT HA CyIUECTBOBAHME KOMIUIEKCHOTO B3aWMOHNENCTBUA MeXIy 3THMM BenuymHamu. HerounocTn
BTOPOTO DOJAa MMEIOT OTHOCHTENBHO MCEHbIIME BIHAHHE HA KDHTHYECKYRO HArpysky. OOcyxaaroTes
3KCIIEPHMEHTEL Ha JKECTKO COEAMHEHHBIX CTPONMJIBHBIX NEPEKPBITAX. 3KCNEPUMEHTANbHBIE DE3ybTaThl

TIOKA3bIBAIOT XOPOMYHO KAYECTBEHHYIO CXOOUMOCTD C TeopHeH.



